

TGEX[™]-HC-dG3-Zeo Expression Vector

INSTRUCTION MANUAL

TGEX[™]-HC-dG3-Zeo Transient Mammalian Expression Vector Catalog #: MX048 Version: A1.1 – December 2023

Table of Contents

Limited Use License for TGEX [™] Vector Series	4
Description	5
Introduction	5
Content, Shipping & Storage	5
Limited Product Warranty	5
TGEX [™] Vector Series	6
Vector Map	7
Cloning Site	7
Feature Table	9
Restriction Site Summary	8
Experimental Procedures	10
General Molecular Biology Techniques	10
Plasmid Maintenance	10
Cloning into TGEX™-HC-dG3-Zeo	10
Sequencing of Inserts	11
Antibody Expression	12
Appendix	13
MSDS Information	13
Quality Control	13
Technical Support	13
References	13

Limited Use License for the TGEX[™] Vector Series

As a condition of sale of this product to you, and prior to using this product, you must agree to the terms and conditions of this license. Antibody Design Labs grants to the buyer with the sale of any of its **TGEX**[™] vectors (the "Product") a non-exclusive, non-transferable and limited license to use the Product in research only conducted by the buyer. Such license specifically excludes the right to sell or otherwise transfer the Product, its components or derivatives thereof to third parties. No modifications to the Product may be made without express written permission from Antibody Design Labs. The buyer is not granted a license to use the Product for human or animal therapeutic, diagnostic, or prophylactic purposes.

Antibody Design Labs does not warrant that the use or sale of the Product, the use thereof in combination with other products, or the use of the Product in the operation of any process will not infringe the claims of any United States or other patent(s).

If the buyer is not willing to accept the limitations of this license, without modification, buyer may refuse this license by returning the Product unopened and unused. By keeping or using the Product, buyer implicitly agrees to be bound by the terms of this license.

Entities wishing to use the Product for commercial purposes are required to obtain a license from Antibody Design Labs. Commercial purposes may include, but are not limited to: use of the Product in manufacturing, use of the Product to provide a service, use of the Product for therapeutic or diagnostic purposes, or resale of the Product, whether or not such Product is resold for use in research. For information on purchasing a commercial license to the Product, please contact a licensing representative by phone at (858) 480-6213 or by e-mail at info@abdesignlabs.com.

All trademarks are the property of their respective owners.

Description

Introduction

The **TGEX**[™] vector series is designed for the rapid expression of antibody molecules by transient gene expression in mammalian cells in suspension culture. This new series, version 7, also allows the selection of stable transformants through the use of Zeocin[®]. This vector series features a cytomegalovirus (CMV) promoter, the adenovirus tripartite leader sequence (TPL) (Logan 1984, Mariati 2010), a composite leader sequence (hybrid between a mammalian kappa leader and the bacterial pelB leader (Valadon 2006)) followed by a universal double-inverted Bsal cloning site to insert antibody variable regions. The constant regions are derived from species-specific IgG, kappa and lambda sequences. The 3' end on the transcription unit is composed of an IRES element, the Zeocin-resistance gene (Sh ble from *Streptoalloteichus hindustanus*), a Woodchuck hepatitis virus post-transcriptional regulatory element, and the rabbit beta-globin polyadenylation signal. Transfection of the **TGEX**[™] expression vectors harboring antibody variable region inserts in widely available cell lines using large-scale transfection technologies (see experimental procedure) typically yields antibody titers between 50 and 250 mg/L in serum-free conditions in just a few days.

The **TGEX™-HC-dG3-Zeo** vector is designed for the expression of a heavy chain variable region with the constant region of the dog IgG1 heavy chain. Expression of full-length antibody molecules is achieved by co-transfection with a light chain variable region cloned into one the **TGEX™** vectors, see below examples to achieve varied antibody formats.

COMBINATION	FORMAT	PURIFICATION
TGEX™-HC-hG1-Zeo + TGEX™-LC-hK-Zeo	Full length human or chimeric human IgG1/K	Protein A or G
TGEX™-FH-hG1-Zeo + TGEX™-LC-hK-Zeo	Human or chimeric IgG1/K Fab fragment	Protein L, G, or IMAC
TGEX™-FC-hG1-Zeo	Human IgG1 Fc fusion	Protein A or G
TGEX™-SCblue-Zeo	Human IgG1 scFv-Fc fusion	Protein A or G

Combination of vectors to desired antibody format (examples)

Content, Shipping & Storage

Content

VECTOR	COMPOSITION	AMOUNT
TGEX™-HC-dG3-Zeo	20 μl at 0.5 μg/μl of DNA vector in DNA Conservation Buffer (Tris-HCL 5 mM, EDTA 0.1 mM, pH 8.5)	10 µg

Shipping & Storage

TGEX[™]-HC-dG3-Zeo vector is shipped on wet ice. Upon receipt, store the vector at -20°C.

Limited Product Warranty

This warranty limits our liability to the replacement of this product. No other warranties of any kind express or implied, including, without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Antibody Design Labs. Antibody Design Labs shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

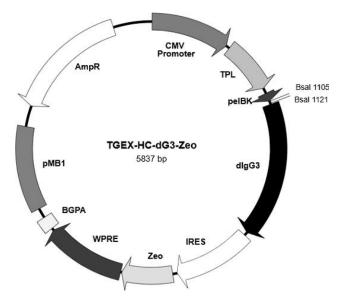
For research use only; not intended for any animal or human therapeutic or diagnostic use.

TGEX™ Vector Series

TGEX[™] vector series for desired isotypes

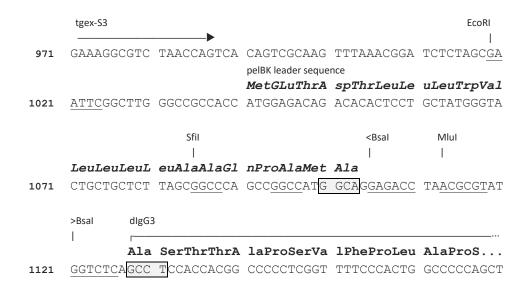
VECTOR	CATALOG	ISOTYPE	DESCRIPTION
TGEX™-HC-hG1-Zeo	MX026	Human IgG1	Heavy chain expression plasmid for human IgG1
TGEX™-FH-hG1-Zeo	MX023	Human IgG1 CH1	For the expression of human IgG1 Fab fragments
TGEX™-FC-hG1-Zeo	MX025	Human IgG1 Fc	For the expression of human IgG1 Fc fusions
TGEX™-HC-hG2-Zeo	MX027	Human IgG2	Heavy chain expression plasmid for human IgG2
TGEX™-HC-hG3-Zeo	MX028	Human IgG3	Heavy chain expression plasmid for human IgG3
TGEX™-HC-hG4[S228P]-Zeo	MX029	Human IgG4[S228P]	Heavy chain expression plasmid for human IgG4
TGEX™-LC-hK-Zeo	MX030	Human Kappa	Light chain expression plasmid for human Kappa
TGEX™-LC-hL2-Zeo	MX031	Human Lambda 2	Light chain expression plasmid for human Lambda 2
TGEX™-HC-mG1-Zeo	MX032	Murine IgG1	Heavy chain expression plasmid for murine IgG1
TGEX™-HC-mG2a-Zeo	MX033	Murine IgG2a	Heavy chain expression plasmid for murine IgG2a
TGEX™-HC-mG2b-Zeo	MX034	Murine IgG2b	Heavy chain expression plasmid for murine IgG2b
TGEX™-HC-mG3-Zeo	MX035	Murine IgG3	Heavy chain expression plasmid for murine IgG3
TGEX™-LC-mK-Zeo	MX036	Murine Kappa	Light chain expression plasmid for murine Kappa
TGEX™-LC-mL1-Zeo	MX037	Murine Lambda 1	Light chain expression plasmid for murine Lambda 1
TGEX™-LC-mL2-Zeo	MX038	Murine Lambda 2	Light chain expression plasmid for murine Lambda 2
TGEX™-HC-rbG-Zeo	MX039	Rabbit IgG	Heavy chain expression plasmid for rabbit IgG
TGEX™-LC-rbKb4-Zeo	MX040	Rabbit Kappa	Light chain expression plasmid for rabbit Kappa
TGEX™-HC-dG1-Zeo	MX046	Dog lgG1	Heavy chain expression plasmid for dog IgG1
TGEX™-HC-dG2-Zeo	MX047	Dog IgG2	Heavy chain expression plasmid for dog IgG2
TGEX™-HC-dG3-Zeo	MX048	Dog IgG3	Heavy chain expression plasmid for dog IgG3
TGEX™-HC-dG4-Zeo	MX049	Dog IgG4	Heavy chain expression plasmid for dog IgG4
TGEX™-LC-dK-Zeo	MX050	Dog Kappa	Light chain expression plasmid for dog Kappa
TGEX™-LC-dL-Zeo	MX051	Dog Lambda	Light chain expression plasmid for dog Lambda

TGEX[™] vector series for Fc-engineered antibodies


VECTOR	CATALOG	ISOTYPE	DESCRIPTION
TGEX™-HC-hG1[EA]-Zeo	MX041	Human IgG1	Human IgG1 heavy chain with increased ADCC/CDC in vitro
TGEX™-HC-hG1[NA]-Zeo	MX042	Human IgG1	Human IgG1 aglycosylated heavy chain
TGEX™-HC-hG1[LALA-PG]-Zeo	MX043	Human IgG1	Human IgG1 heavy chain with decreased ADCC/CDC in vitro
TGEX™-HC-hG1[YTE-KF]-Zeo	MX044	Human lgG1	Human IgG1 heavy chain with increased serum half-life
TGEX™-HC-hG4[SPLE-PG]-Zeo	MX045	Human IgG4[S228P]	Human IgG4 heavy chain with decreased ADCC/CDC in vitro

TGEX $^{\mathrm{m}}$ control vector, universal expression and Fc fusions

VECTOR	CATALOG	USE	DESCRIPTION
TGEX™-AC-Zeo	MX020	Any expressions	Universal expression vector
TGEX™-eGFP-Zeo	MX022	Transfection	Control plasmid for monitoring transient transfections
TGEX™-SCblue-Zeo	MX024	scFv cloning vector	For the transfer of scFv from any PADL phagemid vector and expression as an scFv-Fc fusion


Vector Map

The figure below illustrates the main features of **TGEX™-HC-dG3-Zeo** expression vector. The full vector sequence is available online for download in varied formats on the product web page; the total length of the vector is 5828 bp.

Cloning Site

Following is an illustration of **TGEXTM-HC-dG3-Zeo** cloning site from the EcoRI site and onward. The VH domain is inserted in a double inverted Bsal cloning site located between the pelBK leader sequence and the constant regions. The four base pair overhangs after a restriction digestion with Bsal are boxed and grayed.

Feature Table

The features of **TGEX[™]-HC-dG3-Zeo** transient expression vector are highlighted in the following table.

FEATURE	LOCATION	DESCRIPTION
Promoter	5-585	CMV promoter.
TPL	612-1000	Adenovirus tripartite leader sequence (Logan 1984, Mariati 2010).
pelBK leader	1041-1103	Hybrid kappa/pelB leader peptide sequence. The cleavage occurs on the C- terminal side of the terminal alanine.
Dog IgG3 CDS	1128-2129	Sequence encoding the dog IgG3 heavy chain sequence comprising the CH1 CH2, and CH3 domains with the hinge region. The sequence is intronless; the C-terminal lysine residue is encoded.
IRES	2155-2728	Internal Ribosome Entry Site.
Zeo	2762-3137	Sh ble gene from Streptoalloteichus hindustanus conferring resistance to Zeocin.
WPRE	3145-3733	Woodchuck hepatitis virus post-transcriptional regulatory element.
BGpA	3749-3847	Rabbit beta-globin polyadenylation signal sequence.
pMB1 origin	3921-4540	pBR322 origin for replication in <i>E. coli</i> with a temperature-sensitive high copy-number phenotype (Lin-Chao 1992).
TEM1 beta-lactamase	5555- 4695	Ampicillin resistance for selection in E. coli.

Restriction Site Summary

Enzyme	Site	Nb	Position	Strand	Isoschizomers
AlfI	(10/12) GCANNNNNTGC (12/10) 1	3099		
AlwNI	CAGNNN^CTG	1	4286		Cail PstNI
ApaI	GGGCC^C	1	2268		Bsp120I PspOMI
ArsI	(8/13) GACNNNNNTTYG (11/6)	1	851		
AvrII	C^CTAGG	1	2306		AspA2I BlnI XmaJI
BamHI	G^GATCC	1	2744		-
BbvCI	CCTCAGC(-5/-2)	1	1319		
BcgI	(10/12)CGANNNNNTGC(12/10) 1	5284		
BplI	(8/13) GAGNNNNNCTC (13/8)	1	1779		
BsaXI	(9/12) ACNNNNNCTCC $(10/7)$	1	2998	-	
BsePI	G^CGCGC	1	2798		BssHII PauI PteI
BsgI	GTGCAG(16/14)	1	1596		
Bsp1407I	T^GTACA	1	5799		BsrGI BstAUI
BstEII	G^GTNACC	1	1865		BstPI Eco91I Eco065I PspEI
CspCI	(11/13) CAANNNNNGTGG (12/10) 1	407		
DrdI	GACNNNN^NNGTC	1	3977		AasI DseDI
Eam1105I	GACNNN^NNGTC	1	4763		AhdI BmeRI DriI
EcoNI	CCTNN^NNNAGG	1	1342		BstENI XagI
EcoRV	GAT^ATC	1	2099		Eco32I
Esp3I	CGTCTC(1/5)	1	1256		BsmBI
FalI	(8/13) AAGNNNNNCTT (13/8)	1	784		
FseI	GGCCGG^CC	1	3033		RigI
FspI	TGC^GCA	1	4988		Acc16I NsbI
KflI	GG^GWCCC	1	1173		
KpnI	GGTAC^C	1	2596		Acc65I Asp718I
MauBI	CG^CGCGCG	1	2797		
MluI	A^CGCGT	1	1113		
NheI	G^CTAGC	1	2133		AsuNHI BmtI BspOI
NotI	GC^GGCCGC	1	3137		CciNI
NsiI	ATGCA^T	1	2067		EcoT22I Mph1103I Zsp2I
OliI	CACNN^NNGTG	1	1556		AleI
PasI	CC^CWGGG	1	1796		
PciI	A^CATGT	1	2645		PscI

PmaCI	CAC^GTG	1	2469	AcvI BbrPI Eco72I PmlI PspCI
PmeI	GTTT^AAAC	1	1000	MssI
PstI	CTGCA^G	1	1296	BspMAI
PvuI	CGAT^CG	1	5135	Ple19I
SacI	GAGCT^C	1	583	Ecl136II EcoICRI Eco53kI
				Psp124BI SstI
SalI	G^TCGAC	1	2756	
SexAI	A^CCWGGT	1	2925	CsiI MabI
SgrAI	CR^CCGGYG	1	2875	
SnaBI	TAC^GTA	1	357	BstSNI Eco1051
SpeI	A^CTAGT	1	18	AhlI BcuI
XbaI	T^CTAGA	1	2750	
XcmI	CCANNNNN^NNNTGG	1	1189	
XhoI	C^TCGAG	1	966	Sfr274I PaeR7I SlaI
BglII	A^GATCT	2	3864	
-		2	5688	
Bpu10I	CCTNAGC(-5/-2)	2	930	
-		2	1319	
BspHI	T^CATGA	2	4595	CciI PagI
1		2	5603	5
Bsu36I	CC^TNAGG	2	1303	Eco81I AxyI Bse21I
		2	1590	2
BtrI	CACGTC (-3/-3)	2	2696 -	AjiI BmgBI
		2	2894	
BtsI	GCAGTG(2/0)	2	5161	
2001	0011010(2,0)	2	5189	
DraIII	CACNNN^GTG	2	2513	AdeI
DIGITI		2	3110	naci
EagI	C^GGCCG	2	3093	BseX3I BstZI EclXI Eco52I
Dagi	0 00000	2	3138	Decisi Decel Letiti Leoozi
Ecori	G^AATTC	2	1019	
LCOIL	0 101110	2	1250	
GsuI	CTGGAG(16/14)	2	1343 -	BpmI
USUI	CIGGAG(10/14)	2	4853	ършт
HindIII	A^AGCTT	2	2727	
птпаттт	A AGCII	2	3870	
SacII	CCGC^GG	2	740	Sfr303I KspI SgrBI Cfr42I
SACII	CCGC GG	2	3645	SIISUSI KSPI SGIBI CII42I
SfiI	GGCCNNNN^NGGCC	2	1085	
SIII	GGCCNNNN NGGCC	2	1382	
0				OF THE WAY AND A
SmaI	CCC^GGG	2	2740	Cfr9I TspMI XmaI
57 T	2	2	2850	
VspI	AT^TAAT	2	25	AseI PshBI
		2	4939	

Absent Sites:

AanI, AbsI, AccIII, AfeI, AflII, AgeI, AjuI, AloI, Aorl3HI, Aor51HI, AscI, AsiGI, AsiSI, AsuII, BaeI, BarI, BclI, BfrI, BlpI, BoxI, Bpull02I, Bpul4I, Bsa29I, BsaBI, Bse8I, BseAI, BseCI, BseJI, BshTI, BshVI, BsiWI, Bspl19I, Bspl3I, Bspl720I, Bsp68I, BspDI, BspEI, BspQI, BspT104I, BspTI, BssNAI, Bst1107I, BstAFI, BstAPI, BstBI, BstPAI, BstXI, BstZ17I, Bsu15I, BsuTUI, BtuMI, ClaI, CpoI, CspAI, CspI, DinI, Ecol47I, Eco47III, EgeI, EheI, FbaI, FspAI, HpaI, I-CeuI, I-PpoI, I-SceI, KasI, Kpn2I, Ksp22I, KspAI, LguI, MfeI, Mly113I, MreI, MroI, MspCI, MunI, NarI, NruI, NspV, PI-PspI, PI-SceI, PacI, PaeI, PalAI, PceI, PciSI, Pfl23II, PflFI, PinAI, PluTI, PshAI, PsiI, PspLI, PspXI, PsrI, PsyI, RgaI, RruI, Rsr2I, RsrII, SapI, SbfI, SdaI, SfaAI, SfoI, SfuI, SgfI, SgrDI, SgsI, SmiI, SphI, SrfI, Sse8387I, SseBI, SspDI, StuI, SwaI, Tth111I, Vha464I.

Experimental Procedures

General Molecular Biology Techniques

Molecular biology should be conducted under the supervision of a qualified instructor trained to standard safety practice in a molecular biology laboratory environment. Standard molecular biology procedures can be found in a general molecular biology handbook such as Sambrook (1989).

Plasmid Maintenance

Propagation and maintenance of TEGX[™] vectors is obtained on any *recA1, endA1 E. coli* strain using LB or 2xYT medium supplemented with ampicillin (100 µg/ml) as a selection marker and incubated at 37°C with agitation. TEGX[™] vectors are derivatives of pBR322 with a high copy number origin of replication and usually gives high yields of plasmid DNA with most standard laboratory strains such as XL1-blue or DH5α. The high copy number phenotype is temperature-sensitive and requires incubation at 37°C (Lin-Chao 1992). Some DNA stabilizing strains are known to produce smaller amounts of plasmid DNA. In case of issues, we recommend using XL10-Gold[®] from Agilent Technologies, Inc., on which TGEX[™] plasmid DNA can be isolated in large quantities.

Cloning into TGEX[™]-HC-dG3-Zeo

In Silico Design

A double inverted Bsal cloning site separates the pelBK leader peptide sequence from the beginning of the antibody constant region. After digestion with Bsal, the heavy chain variable domain is inserted in-frame between the two elements as illustrated below. During the cloning, the two Bsal sites are eliminated.

		Sfil				dlgG3
						Γ
	LeuLeuLeuL	euAlaAlaGl	nProAlaMet	Ala		Ala SerThrThrA laProSerVa
1071	CTGCTGCTCT	TAGC <u>GGCC</u> CA	GCC <u>GGCC</u> AT <mark>G</mark>	GCA	[VH]	GCC TCCACCACGG CCCCCTCGGT

Vector Digestion

Bsal alone is sufficient to open the cloning site. Please, consult the documentation of your restriction enzyme provider for optimal conditions.

Cloning with FAST-Licase™

Homologous recombination is the easiest and most efficient method to clone seamlessly antibodies into TGEX[™] vectors. We recommend the **FAST-Licase[™]** (Antibody Design Labs cat# MB101S & MB101L) with the following overhangs. For synthetic dsDNA constructs, the overhangs are added on each side. For PCR-amplified constructs, primers should contain the overhang followed by the antibody priming area. The **FAST-Licase[™]** reaction contains the insert plus the purified vector digested with Bsal (see kit instructions).

pelBK overhang	5' - CGGCCCAGCCGGCCATGGCA
dlgG3 overhang	5' - GCCTCCACCACGGCCCCCTC (reverse complement for PCR primers)

Primer Design for Restriction Cloning with the Bsal Sites

Oligo1 is an example of primer designed to amplify a VH domain sequence and clone it into the Bsal site situated next to the pelBK leader. A minimum of 2 nucleotides is recommended to cut Bsal site close to the end (source New England BioLabs); these 2 nucleotides are followed by the Bsal site GGTCTC and the last five nucleotides of the leader sequence; the resulting NNGGTCTCTGGCA extension is added 5' to the VH domain primer.

Oligo1 5'-NNGGTCTCTGGCA-VH-start

Oligo2 is an example of primer designed to amplify the VH domain from the end of the J region including a Bsal site compatible with **TGEX™-HC-dG3-Zeo** cloning site.

Bsal is a type IIS restriction enzyme that cuts outside of its recognition site. The second Bsal site of the cloning site will be cut immediately before the start of the human IgG1 constant region sequence, exactly 1 base after the end of the site and 5 bases further on the opposite strand, thus freeing a 5' 4-base overhang GCCT on the sense strand. In Oligo2, a Bsal recognition site is situated symmetrically to the vector and will generate a complementary overhang.

Oligo2 5'-NNGGTCTCGAGGC-JH-end

After digestion and ligation, all the two Bsal sites, from both insert and vector, will be removed, resulting in a scarless insertion of the antibody domain.

Alternative to Bsal Sites

All restriction enzymes that generate 4-base long 5' overhangs can be used in place of Bsal; this is the case for example of BsmBl (CGTCTC(1/5)), another type IIS restriction enzyme. This option could come in handy when the VH domain contains another Bsal preventing cloning.

Sequencing of Inserts

The following primers give a strong PCR amplification of the TGEX[™] vector series inserts and the antibody constant regions between the EcoRI site and the NheI site. The primer tgex-S3 can be used to sequence the VH domain in full.

tgex-S3 5'- AGGCGTCTAACCAGTCACAGTC

ires-R 5'- GAATAAGGCCGGTGTGCGTT

Antibody Expression

Cell Lines

Cell lines adapted for culture in suspension and serum-free conditions are recommended. HEK293 and CHO cells are often used for antibody expression by transient transfection; you can either adapt your own cell line or obtain it from a supplier (e.g. Life Technology). HEK293 cells are particularly well suited for expression using **TGEX™** vector series.

Transient Transfection

Many transfection reagents especially designed for transient transfection are commercially available from different providers (e.g. Life Technologies, Mirus Bio LLC, etc.). We recommend testing the transfection conditions with a reporter plasmid first to determine the percentage of cells effectively transfected and optimal transfection conditions; fluorescent reporters are often used with that purpose, e.g. TGEX[™]-eGFP-Zeo (Antibody Design Labs cat# MX022). Similarly, any condition known to boost expression should be carefully tested in your system before being scaled up. We did observe an increase in expression in HEK293 cells upon exposure to sodium valproate (Backliwal 2008). Boosters and enhancers are often included in commercially available transfection kits.

Stable Cell Line Selection

Zeocin can be used very effectively to select stable cell lines secreting antibodies in a few weeks. The following protocol are suggestions that require adjustment to your particular constructs:

WEEK 1.

- Day 0: Transfect in duplicate cells in a 6-well plate containing 2 ml culture per well;
- Day 3-4: Expand each well in two wells with 2 ml culture per well.
- Day 6: Increase the volume to 4 ml per well and add Zeocin at 100 μ g/ml.

WEEK 2-3

• Maintain a good cell density and the Zeocin concentration while replenishing the culture with fresh medium as needed.

WEEK 3-4

- Continue selection with possibly a higher Zeocin concentration (up to 1000 μg/ml).
- Proceed to single cloning and analyze stable transformants for expression.

Light chain to Heavy chain ratio

We recommend starting with a 1:1 light chain to heavy chain ratio during transfection. We observed many antibodies with a better expression at a 2:1 light chain to heavy chain ratio although each antibody requires fine tuning for optimal expression.

Appendix

MSDS Information

Material Safety Data Sheets are available on Antibody Design Labs website at the corresponding product page.

Quality Control

Specifications and quality control are detailed on the online product page. Antibody Design Labs certifies that the product will perform according to these specifications.

Technical Support

Visit Antibody Design Labs website at **www.abdesignlabs.com** for technical resources, including manuals, vector maps and sequences, application notes, FAQs, etc.

For more information or technical	assistance, call,	write, or email us at:
-----------------------------------	-------------------	------------------------

Antibody Design Labs 4901 Morena Blvd, Suite 203 San Diego, CA 92117 Email: support@abdesignlabs.com Phone: 1-877-223-3104 (Toll-Free) (Monday – Friday 9:00 AM – 5:00 PM PST)

References

- 1. Logan J, & Shenk T. (1984). Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. *Proc Natl Acad Sci USA*, *81*(12):3655–9.
- 2. Mariati, Ho SCL, Yap MGS, & Yang Y. (2010). Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. *Protein Expr Purif*, 69(1):9–15.
- 3. Valadon P, Garnett JD, Testa JE, Bauerle M, Oh P, & Schnitzer JE. (2006). Screening phage display libraries for organspecific vascular immunotargeting in vivo. *Proc Natl Acad Sci USA*, 103(2):407–12.
- 4. Lin-Chao S, Chen WT, Wong TT (1992). High copy number of the PUC plasmid results from a ROM/ROP-suppressible point mutation in RNA II. *Mol Microbiol*, *6*(22):3385–93.
- 5. Sambrook J, Fritsch EF, & Maniatis T. (1989). In Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, NY, VOL. 1, 2, 3.
- 6. Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DI, Wurm FM. (2008). Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. *Biotechnol Bioeng*, 101(1):182–9.

This product is subject to Antibody Design Labs Terms & Conditions of Sales available online at http://www.abdesignlabs.com/terms/. © 2024 Antibody Design Labs. All rights reserved.